Simulation and mathematical modeling of a 4-degree-of-freedom robotic ARM

  • Luis Armas Universidad Técnica de Cotopaxi
  • Jessica N Castillo Universidad Técnica de Cotopaxi
  • Luigi O Freire Universidad Técnica de Cotopaxi
Keywords: Partial derivatives, robotic arm, 4 degrees of freedom, automation, kinematics

Abstract

The following article shows in detail the development of the modeling process of a manipulator of a robotic arm corresponding to four degrees of freedom (4GL) this study was based on direct kinematics for the calculation and accuracy of the position of the end effector based on their joint directions. It starts from a particular position and its location in the plane is observed. The use of the method was done because it is important to identify the movement of the robot. The simulation was performed using Matlab software, in this program it was possible to illustrate the movement of the robot and how it correctly reaches the movement in the direction of a previously defined trajectory. Additionally, a test was implemented that helped to verify that the robot was able to position itself at the desired end point and that the errors generated were minimal. The results showed that the control system reached a steady behavior, and that the tracking error was reduced to converge to zero, demonstrating an efficient and precise movement, which occurred in a time of approximately 8 seconds, which evidences an adequate stability and an effective design of the control system. The stability of the movement was also evaluated by applying the Lyapunov criterion, which provides a theoretical confirmation of the reliability of the control system used. In summary, the results show that the robotic arm is capable of performing complex trajectories while maintaining a stable motion.

Downloads

Download data is not yet available.

References

Pazmiño, L., Echeverría, D., & Cepeda, J. (2018). Análisis de transitorios electromagnéticos en el Sistema Nacional Interconectado (S.N.I.) a nivel de 230 kV y 500 kV usando el simulador digital en tiempo real HYPERsim. Revista Técnica Energía, 15(1). https://doi.org/10.37116/revistaenergia.v15.n1.2018.319

J. Medina Cervantes, R. Villafuerte Díaz, and E. Mejía Sánchez, "3D simulator for a 4-degree-of-freedom robotic arm," Revista Iberoamericana para la Investigación y el Desarrollo Educativo, no. 12, pp. 1-14, 2014.

Plasencia, A., Freire, L. O., Quinatoa, C., & Castillo, J. (2024). Optimization of Power System Operation Using Battery Energy Storage Systems. En Lecture notes in networks and systems (pp. 496-510). https://doi.org/10.1007/978-3-031-68653-5_47

A. Monje and S. Dormido, Industrial Automation and Robotics, Madrid, Spain: UNED, 2011.

A. Monje and S. Dormido, Automática y Robótica Industrial, Madrid, Spain: UNED, 2011.

Mercado, L. D. M., Bolívar, L. M., & Mckinley, J. R. (2017). Cinemática de velocidad y aceleración del robot serial Mitsubishi Movemaster RV-M1. Entre Ciencia E Ingeniería, 11(22), 84-94. https://doi.org/10.31908/19098367.3552

J. N. Castillo, G. G. Carrillo, L. O. Freire, and J. Culqui, "Fusion data management and modeling techniques in power quality compensation using SAPF," Fusion: Practice and Applications, vol. 16, no. 2, pp. 8-21, 2024.

Felipe, L. A. L. (2011, 9 mayo). Modelación y simulación dinámica de un brazo robótico de 4 grados de libertad para tareas sobre un plano horizontal. https://repositorio.pucp.edu.pe/items/2b0ffdbc-a70e-4b54-8ed9-796a0f3739a8

Humberto, G. T. A. (2021, 27 julio). Simulación en el entorno Simulink de Matlab de un brazo robótico de 4 grados de libertad (GDL). https://bibdigital.epn.edu.ec/handle/15000/21750

AcostaR., ArgüelloD., RobalinoR., y MarreroS., «Caracterización de los motores paso a paso y su aplicación», CIYA, vol. 5, n.º 2, pp. 99-113, ago. 2021.

Husnain, S., & Abdulkader, R. (2023). Fractional Order Modeling and Control of an Articulated Robotic Arm. Engineering Technology & Applied Science Research, 13(6), 12026-12032. https://doi.org/10.48084/etasr.6270

Iqbal, J. (2019). Modern Control Laws for an Articulated Robotic Arm: Modeling and Simulation. Engineering Technology & Applied Science Research, 9(2), 4057-4061. https://doi.org/10.48084/etasr.2598

Published
2025-07-09
How to Cite
ArmasL., CastilloJ. N., & FreireL. O. (2025). Simulation and mathematical modeling of a 4-degree-of-freedom robotic ARM. Ciencias De La Ingeniería Y Aplicadas, 9(2), 144-156. https://doi.org/10.61236/ciya.v9i2.1108
Section
Research article