Caracterización preliminar de la calidad del agua del Reservorio del Centro Experimental Académico Salache

  • Kalina Fonseca Universidad Técnica de Cotopaxi
  • Martina Clairand Universidad Técnica de Cotopaxi
Palabras clave: Calidad de agua, contaminantes, reservorio, riego, variables ambientales

Resumen

El uso de aguas de riego con altos niveles de contaminantes es una práctica común entre agricultores de países no tecnificados causando impactos nocivos en los cultivos y suelos. La presente investigación caracterizó la calidad del agua del reservorio del Centro Experimental Académico Salache (CEASA), que actualmente es utilizada con fines agrícolas. Para dicho fin, se muestreó y analizó pH, temperatura, conductividad eléctrica (CE), turbidez, oxígeno disuelto (OD), nitritos, hierro y bacterias por medición multiparamétrica, espectrofotometría y análisis microbiológico, respectivamente. Se estudió variables ambientales, en particular la dureza, que fue calculada a partir de la conductividad en base al método desarrollado por Krawczykl y Ford. Los valores recolectados fueron comparados con los límites máximos permisibles (LMP) establecidos en legislación ambiental ecuatoriana. Los resultados obtenidos permitieron determinar la calidad del agua y establecer la disponibilidad para los cultivos, considerando los efectos adversos que implica el riego con agua contaminada.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ayers, R.S., y D.W. Westcot. (1985). Water quality for agriculture, FAO Irrigation and Drainage paper 29, FAO, Roma, 156 p.

Beuchat, L. R. (1999). Survival of enterohemorrhagic Escherichia coli O157:H7 in bovine feces applied to lettuce and the effectiveness of chlorinated water as a disinfectant. Journal of Food Protection, 62(8), 845-849.

BD_MacConkey. (2014). Instrucciones de uso – medios en placa listos para usar. http://www.bd.com/resource.aspx?IDX=8770

Briat, J.-F., Dubos, C., y Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20(1), 33-40. https://doi.org/10.1016/j.tplants.2014.07.005

Canovas Cuenca J. (1986). Calidad Agronómica de las agua de riego.

Carrera Manuel, y Box J.M Mateo. (2005). Prontuario de agricultura.

Davies‐Colley, R. J., y Smith, D. G. (2001). Turbidity Suspeni)ed Sediment, and Water Clarity: A Review1. JAWRA Journal of the American Water Resources Association, 37(5), 1085-1101. https://doi.org/10.1111/j.1752-1688.2001.tb03624.x

Emerson, K., Russo, R. C., Lund, R. E., y Thurston, R. V. (1975). Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 32(12), 2379-2383. https://doi.org/10.1139/f75-274

Fletcher, T. D., y Deletic, A. (2007). Statistical evaluation and optimisation of stormwater quality monitoring programmes. Water Science and Technology, 56(12), 1-9. https://doi.org/10.2166/wst.2007.744

Fonseca, K. F., Ilbay, M., Bustillos, L., Barbosa, S., y Iza, A. (2018). Comparación de Métodos de Interpolación para la Estimación de Temperatura del Reservorio CEASA. Revista Bases de la Ciencia. e-ISSN 2588-0764, 3(1), 57-66.

Gorde S.P, y Jadhav M.V. (2013). Assessment of Water Quality Parameters: A Review.

Gwenzi, W., Dunjana, N., Pisa, C., Tauro, T., y Nyamadzawo, G. (2015). Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustainability of Water Quality and Ecology, 6, 107-118. https://doi.org/10.1016/j.swaqe.2015.01.006

Hammer, D. A., y Knight, R. L. (1994). Designing Constructed Wetlands for Nitrogen Removal. Water Science and Technology, 29(4), 15-27.

Hammer, D. A., y Knight, R. L. (1994). Designing Constructed Wetlands for Nitrogen Removal. Water Science and Technology, 29(4), 15-27.

Joannis, C., Ruban, G., Gromaire, M.-C., Bertrand-Krajewski, J.-L., y Chebbo, G. (2008). Reproducibility and uncertainty of wastewater turbidity measurements. Water Science and Technology, 57(10), 1667-1673. https://doi.org/10.2166/wst.2008.292

Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., y Jorgensen, S. E. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127(1), 21-31. https://doi.org/10.1016/S0304-3800(99)00196-9

Krawczyk, W. E., y Ford, D. C. (2006). Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surface Processes and Landforms, 31(2), 221-234. https://doi.org/10.1002/esp.1232

Lacour, C., Joannis, C., Gromaire, M.-C., y Chebbo, G. (2009). Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events. Water Science and Technology, 59(8), 1471-1478. https://doi.org/10.2166/wst.2009.169

McCarthy, J. C., Pyle, T. E., y Griffin, G. M. (1974). Light transmissivity, suspended sediments and the legal definition of turbidity. Estuarine and Coastal Marine Science, 2(3), 291-299. https://doi.org/10.1016/0302-3524(74)90019-X

Mossel, D. A. A., Mengerink, W. H. J., y Scholts, H. H. (1962). Use of a modified Macconkey agar medium for the selective growth and enumeration of Enterobacteriaceae. Journal of Bacteriology, 84(2), 381.

Namara, R. E., Hanjra, M. A., Castillo, G. E., Ravnborg, H. M., Smith, L., y Van Koppen, B. (2010). Agricultural water management and poverty linkages. Agricultural Water Management, 97(4), 520-527.

Meng, D., y Fricke, W. (2017). Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiology and Biochemistry, 113, 64-77. https://doi.org/10.1016/j.plaphy.2017.02.001

Nieto, C. (1990). Identificación de microcentros de variabilidad en quinua, amaranto y chocho en Ecuador INIAP, EE.

Pichu Rengasamy. (2006). World salinisation with emphasis on Australia. ResearchGate. Recuperado a partir de https://www.researchgate.net/publication/283969475_World_salinisation_with_emphasis_on_Australia

Radwan, D. M., Willems, D. P., El‐Sadek, D. A., y Berlamont, P. J. (2003). Modelling of dissolved oxygen and biochemical oxygen demand in river water using a detailed and a simplified model. International Journal of River Basin Management, 1(2), 97-103. https://doi.org/10.1080/15715124.2003.9635196

Richards L.A, Allison L.E, Brown J. W, Hayward H. E, Bower C. A, Hatcher J. T, y Reeve R. C. (1969). Diagnosis and improvement of saline and alkali soils. Washington: United States Department Of Agriculture.

R.S. Ayers, D.W. Westcot. (1985). Water quality for agriculture. Recuperado 27 de junio de 2017, a partir de http://www.fao.org/docrep/003/T0234E/T0234E00.htm

Rubenowitz-Lundin, E., y Hiscock, K. M. (2013). Water Hardness and Health Effects. En Essentials of Medical Geology (pp. 337-350). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_14

Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., y Borja, R. (2007). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7(2), 315-328. https://doi.org/10.1016/j.ecolind.2006.02.005

Sarabia Irma, Cisneros Rodolfo, Aceves Joege, Durán Héctor, y Castro Javier. (2011). Calidad del agua de riego en suelos agrícolas y cultivos del valle de San Luis potosí, México, 27(2), 103-113.

SEPHU, S.A. (2010). Cultivo de la quínoa orgánica (Chenopodium quínoa Willd) El grano dorado tesoro de los Quechuas y Aymaras.

Solomon, E. B., Yaron, S., y Matthews, K. R. (2002). Transmission of Escherichia coli O157:H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent Internalization. Applied and Environmental Microbiology, 68(1), 397-400. https://doi.org/10.1128/AEM.68.1.397-400.2002

Steele, M., y Odumeru, J. (2004). Irrigation Water as Source of Foodborne Pathogens on Fruit and Vegetables. Journal of Food Protection, 67(12), 2839-2849. https://doi.org/10.4315/0362-028X-67.12.2839

TULSMA. (2013).Norma de Calidad Ambiental y descarga de efluentes al recurso agua. Criterios de Calidad de Agua para riego.

Uyttendaele Mieke, Jaykus Lee‐Ann, Amoah Philip, Chiodini Alessandro, Cunliffe David, Jacxsens Liesbeth, Jasti Pratima Rao. (2015). Microbial Hazards in Irrigation Water: Standards, Norms, and Testing to Manage Use of Water in Fresh Produce Primary Production. Recuperado a partir de https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12133

Valipour, M. (2015). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5(4), 367-395. https://doi.org/10.1007/s13201-014-0199-1

Valipour, M., y Singh, V. P. (2016). Global Experiences on Wastewater Irrigation: Challenges and Prospects. En Balanced Urban Development: Options and Strategies for Liveable Cities (pp. 289-327). Springer, Cham. https://doi.org/10.1007/978-3-319-28112-4_18

Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P.,Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1-4), 595-609. https://doi.org/10.1007/s10661-009-1302-1

Viero, A. F., Mazzarollo, A. C. R., Wada, K., y Tessaro, I. C. (2002). Removal of hardness and COD from retanning treated effluent by membrane process. Desalination, 149(1), 145-149. https://doi.org/10.1016/S0011-9164(02)00746-4

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014

Weller, D. L., Kovac, J., Kent, D. J., Roof, S., Tokman, J. I., Mudrak, E., … Wiedmann, M. (2017). Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States. Food Microbiology, 68, 24-33. https://doi.org/10.1016/j.fm.2017.06.009

Zhao, D., Hao, Z., Wang, J., y Tao, J. (2013). Effects of pH in irrigation water on plant growth and flower quality in herbaceous peony (Paeonia lactiflora Pall.). Scientia Horticulturae, 154, 45-53. https://doi.org/10.1016/j.scienta.2013.02.023.

Publicado
2018-07-03
Cómo citar
FonsecaK., & ClairandM. (2018). Caracterización preliminar de la calidad del agua del Reservorio del Centro Experimental Académico Salache. Revista UTCiencia: I-ISSN: 1390-6909. E-ISSN: 2602-8263, 5(1), 60-72. Recuperado a partir de http://investigacion.utc.edu.ec/index.php/utciencia/article/view/133
Sección
Artículo de investigación