Motores DC de reluctancia variable. Control y aplicaciones

  • Marcelo Xavier Moya Cajas Universidad Internacional SEK
  • Adriana Soledad Mejía Suarez Universidad Internacional SEK
  • David Ismael Delgado Parra Universidad Internacional SEK
Palabras clave: motores corriente continua, reluctancia, eficiencia, costo energético

Resumen

El presente documento presenta una revisión bibliográfica sobre las características, ventajas, desventajas y aplicaciones de los motores DC de reluctancia variable dentro del campo de la eficiencia energética en sistemas eléctricos en la industria. El principio de reluctancia magnética comprende de un rotor de polos salientes construido únicamente de material ferromagnético que trata de alinearse de forma constante con el campo magnético generado por el estator. Su funcionamiento permite obtener temperaturas muy bajas en su bobinado aumentando la fiabilidad y duración tanto del bobinado como de los elementos mecánicos como los rodamientos. La tecnología de reluctancia variable permite manejar cargas parciales con una alta eficiencia mediante el rendimiento dinámico del sistema, lo cual se refleja en una reducción significativa de costos energéticos.

Descargas

La descarga de datos todavía no está disponible.

Citas

P. R. Viego Felipe, J. R. Gómez Sarduy, and E. C. Quispe Oqueña, "Motores sincrónicos de reluctancia controlados con variadores de frecuencia: una aplicación para ahorrar energía," Ingeniería Energética, vol. 36, no. 1, 2015.

H. D. P. Ávila, L. A. N. Vega, and J. H. C. Morera, "Análisis multifísico de un motor de reluctancia conmutada de rotor exterior usando elementos finitos," Tecnura, vol. 19, pp. 151-156, 2015.

Omekanda, "Switched reluctance machines for EV and HEV propulsion: State-of-the-art," in Electrical Machines Design Control and Diagnosis (WEMDCD), 2013 IEEE Workshop on, 2013, pp. 70-74: IEEE.

G. Pellegrino, T. M. Jahns, N. Bianchi, W. L. Soong, and F. Cupertino, The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors: Tutorial Course Notes. Springer, 2016.

W. Chapman, Engineering modeling and design. Routledge, 2018.

L. R. Huang, J. H. Feng, S. Y. Guo, J. X. Shi, W. Q. Chu, and Z. Q. Zhu, "Analysis of Torque Production in Variable Flux Reluctance Machines," IEEE Transactions on Energy Conversion, vol. 32, no. 4, pp. 1297-1308, 2017.

U. Jakobsen, K. Lu, P. O. Rasmussen, D. Lee, and J. Ahn, "Sensorless Control of Low-Cost Single-Phase Hybrid Switched Reluctance Motor Drive," IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2381-2387, 2015.

E. A. El-Hay, M. A. El-Hameed, and A. A. El-Fergany, "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, vol. 163, pp. 699-711, 2018/11/15/ 2018.

M. Products. (2018). Step Motors. Available: https://www.applied-motion.com/news/2015/10/how-does-step-motor-work

J. F. Gieras, Z. J. Piech, and B. Tomczuk, Linear synchronous motors: transportation and automation systems. CRC press, 2016.

J. I. Perat Benavides, Contribución al control de motores de reluctancia autoconmutados. Universitat Politècnica de Catalunya, 2006.

J. Evangeline S, S. Suresh Kumar, and J. Jayakumar, "Torque modeling of Switched Reluctance Motor using LSSVM-DE," Neurocomputing, vol. 211, pp. 117-128, 2016/10/26/ 2016.

P. Andrada et al., "El motor de reluctancia autoconmutado," Revista Técnica Industrial Especial Electricidad y Electrónica, pp. 32-41, 2004.

R. Melício and V. M. F. Mendes, "Simulación de Convertidores de Potencia en Sistemas Eólicos," Información tecnológica, vol. 18, pp. 25-34, 2007.

O. Ellabban and H. Abu-Rub, "Switched reluctance motor converter topologies: A review," in 2014 IEEE International Conference on Industrial Technology (ICIT), 2014, pp. 840-846.

B. Singh, A. K. Mishra, and R. Kumar, "Solar Powered Water Pumping System Employing Switched Reluctance Motor Drive," IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3949-3957, 2016.

S. M. Castano and J. Maixe-Altes, "Design and sizing of a switched reluctance motor for an automotive application," DYNA, vol. 80, no. 181, pp. 81-90, 2013.

N. Niguchi, K. Hirata, A. Kohara, K. Takahara, and H. Suzuki, "Hybrid Drive of a Variable Flux Reluctance Motor and Switched Reluctance Motor," in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 238-242.

Q. Yu, B. Bilgin, and A. Emadi, "Loss and Efficiency Analysis of Switched Reluctance Machines Using a New Calculation Method," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3072-3080, 2015.

X. Ge, Z. Q. Zhu, R. Ren, and J. T. Chen, "A Novel Variable Reluctance Resolver with Nonoverlapping Tooth–Coil Windings," IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 784-794, 2015.

W. Geng, Z. Zhang, K. Jiang, and Y. Yan, "A new parallel hybrid excitation machine: Permanent-magnet/variable-reluctance machine with bidirectional field-regulating capability," IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1372-1381, 2015.

Publicado
2021-09-06
Cómo citar
Moya CajasM. X., Mejía SuarezA. S., & Delgado ParraD. I. (2021). Motores DC de reluctancia variable. Control y aplicaciones. Ciencias De La Ingeniería Y Aplicadas, 4(1), 37-50. Recuperado a partir de http://investigacion.utc.edu.ec/index.php/ciya/article/view/351
Sección
Artículos de revisión