Variable reluctance DC motors. Control and applications

  • Marcelo Xavier Moya Cajas Universidad Internacional SEK
  • Adriana Soledad Mejía Suarez Universidad Internacional SEK
  • David Ismael Delgado Parra Universidad Internacional SEK
Keywords: Direct Current Motors, Reluctance, Efficiency, Energy Cost

Abstract

This document presents a bibliographic review on the characteristics, advantages, disadvantages and applications of variable reluctance DC motors within the field of energy efficiency in electrical systems in industry. The principle of magnetic reluctance comprises a rotor with salient poles constructed solely of ferromagnetic material that tries to align itself constantly with the magnetic field generated by the stator. Its operation allows very low temperatures to be obtained in its winding, increasing the reliability and duration of both the winding and the mechanical elements such as bearings. Variable reluctance technology allows partial loads to be handled with high efficiency through the dynamic performance of the system, which is reflected in a significant reduction in energy costs.

Downloads

Download data is not yet available.

References

P. R. Viego Felipe, J. R. Gómez Sarduy, and E. C. Quispe Oqueña, "Motores sincrónicos de reluctancia controlados con variadores de frecuencia: una aplicación para ahorrar energía," Ingeniería Energética, vol. 36, no. 1, 2015.

H. D. P. Ávila, L. A. N. Vega, and J. H. C. Morera, "Análisis multifísico de un motor de reluctancia conmutada de rotor exterior usando elementos finitos," Tecnura, vol. 19, pp. 151-156, 2015.

Omekanda, "Switched reluctance machines for EV and HEV propulsion: State-of-the-art," in Electrical Machines Design Control and Diagnosis (WEMDCD), 2013 IEEE Workshop on, 2013, pp. 70-74: IEEE.

G. Pellegrino, T. M. Jahns, N. Bianchi, W. L. Soong, and F. Cupertino, The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors: Tutorial Course Notes. Springer, 2016.

W. Chapman, Engineering modeling and design. Routledge, 2018.

L. R. Huang, J. H. Feng, S. Y. Guo, J. X. Shi, W. Q. Chu, and Z. Q. Zhu, "Analysis of Torque Production in Variable Flux Reluctance Machines," IEEE Transactions on Energy Conversion, vol. 32, no. 4, pp. 1297-1308, 2017.

U. Jakobsen, K. Lu, P. O. Rasmussen, D. Lee, and J. Ahn, "Sensorless Control of Low-Cost Single-Phase Hybrid Switched Reluctance Motor Drive," IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2381-2387, 2015.

E. A. El-Hay, M. A. El-Hameed, and A. A. El-Fergany, "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, vol. 163, pp. 699-711, 2018/11/15/ 2018.

M. Products. (2018). Step Motors. Available: https://www.applied-motion.com/news/2015/10/how-does-step-motor-work

J. F. Gieras, Z. J. Piech, and B. Tomczuk, Linear synchronous motors: transportation and automation systems. CRC press, 2016.

J. I. Perat Benavides, Contribución al control de motores de reluctancia autoconmutados. Universitat Politècnica de Catalunya, 2006.

J. Evangeline S, S. Suresh Kumar, and J. Jayakumar, "Torque modeling of Switched Reluctance Motor using LSSVM-DE," Neurocomputing, vol. 211, pp. 117-128, 2016/10/26/ 2016.

P. Andrada et al., "El motor de reluctancia autoconmutado," Revista Técnica Industrial Especial Electricidad y Electrónica, pp. 32-41, 2004.

R. Melício and V. M. F. Mendes, "Simulación de Convertidores de Potencia en Sistemas Eólicos," Información tecnológica, vol. 18, pp. 25-34, 2007.

O. Ellabban and H. Abu-Rub, "Switched reluctance motor converter topologies: A review," in 2014 IEEE International Conference on Industrial Technology (ICIT), 2014, pp. 840-846.

B. Singh, A. K. Mishra, and R. Kumar, "Solar Powered Water Pumping System Employing Switched Reluctance Motor Drive," IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3949-3957, 2016.

S. M. Castano and J. Maixe-Altes, "Design and sizing of a switched reluctance motor for an automotive application," DYNA, vol. 80, no. 181, pp. 81-90, 2013.

N. Niguchi, K. Hirata, A. Kohara, K. Takahara, and H. Suzuki, "Hybrid Drive of a Variable Flux Reluctance Motor and Switched Reluctance Motor," in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 238-242.

Q. Yu, B. Bilgin, and A. Emadi, "Loss and Efficiency Analysis of Switched Reluctance Machines Using a New Calculation Method," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3072-3080, 2015.

X. Ge, Z. Q. Zhu, R. Ren, and J. T. Chen, "A Novel Variable Reluctance Resolver with Nonoverlapping Tooth–Coil Windings," IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 784-794, 2015.

W. Geng, Z. Zhang, K. Jiang, and Y. Yan, "A new parallel hybrid excitation machine: Permanent-magnet/variable-reluctance machine with bidirectional field-regulating capability," IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1372-1381, 2015.

Published
2021-09-06
How to Cite
Moya CajasM. X., Mejía SuarezA. S., & Delgado ParraD. I. (2021). Variable reluctance DC motors. Control and applications. Ciencias De La Ingeniería Y Aplicadas, 4(1), 37-50. Retrieved from http://investigacion.utc.edu.ec/index.php/ciya/article/view/351
Section
Artículos de revisión