Physical and Aerodynamic Properties of Lateritic Mineral for use in Pneumatic Transport

  • Enrique Torres Tamayo Universidad Técnica de Cotopaxi
  • Héctor Luís Laurencio Alfonso Universidad Técnica de Cotopaxi
  • Paco Jovanni Vásquez Carrera Universidad Técnica de Cotopaxi
  • Marcelo Fabián Salazar Corrales Escuela Politécnica del Ejército, Latacunga
Keywords: Pneumatic transport, Float Speed, Density, Lateritic Mineral Particles

Abstract

To carry out the mathematical modeling and achieve greater efficiency in the pneumatic transport systems of the lateritic mineral, in this work the physical and aerodynamic properties that have the greatest influence on the transport are determined. The correlation of the flotation speed and the resistance coefficient as a function of the diameter and moisture content of the particles is established using experimental techniques. The density of the particles, apparent density and granulometric composition of the material are also determined. It was experimentally confirmed that the flotation speed reaches a maximum value of 5.42 m/s for the largest particle diameter present in the samples. The apparent density takes a value of 1.0683 g/cm3 and the density of the particles is 3.0269 g/cm3.

Downloads

Download data is not yet available.

References

(1) Lampinen and Markku, "Calculation Methods for determining the pressure Loss of Twophase Pipe Flow and Ejectors in Pneumatic Conveying Systems," presented at the Acta polytechnica scandinavica Mechanical Engineering series No 99, Helsinki University of Technology Laboratory of Thermal Engineering. Finland, 1991.

(2) Pacheco and Pedro, "Ecuaciones para el diseño de instalaciones a transporte neumático por tuberías verticales de materiales polvorientos, granulados, polimorfos y poli dispersos," Tesis doctoral, Universidad de Oriente, Santiago de Cuba, 1984.

(3) Lesme, "Modelación del movimiento de las partículas y pérdidas en codos durante el transporte neumático del bagazo," Tesis doctoral, Universidad de Oriente, Santiago de Cuba, 1996.

(4) Chavoshgoli, "Aerodynamic and some physical properties of sunflower seeds as affected by moisture content," Agric Eng Int: CIGR Journal, vol. 16, 2014.

(5) Taylor, "Specific energy consumption and particle attrition in neumatic conveying," Unilever Research and Engineering, vol. 11, pp. 1-13, 2001.

(6) Harada, Tanaka, and Tsuji, "Fluid Force Acting on a Falling Particle toward a Plane Wall," presented at the ASME FEDSM'00 (ASME 2000 Fluids Engineering Division Summer Meeting), Boston, USA, 2000.

(7) Kawaguchi, Miyoshi, Tanaka, and Tsuji, "Discrete Particle Analysis of 2D Pulsating Fluidized Bed," presented at the 4th Int. Conf. on Multiphase Flow (ICMF-2001), New Orleans, USA, May 27-June1, (2001), Paper No. 838 (CD-ROM), 2001.

(8) Pan, Tanaka, and Tsuji, "Large-Eddy Simulation of Particle-Laden Rotating Channel Flow," presented at the ASME FEDSM'00 (ASME 2000 Fluids Engineering Division Summer Meeting), Boston, USA, June 11-15, (2000), Paper No. FEDSM2000-11144(CD-ROM), 2000.

(9) Miyoshi, Kawaguchi, Tanaka, and Tsuji, "Numerical Analysis on Effects on Pulsating Gas on Flows in Gas-Solid Fluidized Bed," presented at the Fourth International Particle Technology Forum (AIChE Annual Meeting 2000), Los Angeles, USA, November 12-17, (2000) (CD-ROM).

(10) Miranda, "Comparación y conjugación de métodos de determinación de humedad en la Industria del Níquel," Minería y Geología, vol. 13, pp. 42-47, 1996.

Published
2017-11-29
How to Cite
Torres TamayoE., Laurencio AlfonsoH. L., Vásquez CarreraP. J., & Salazar CorralesM. F. (2017). Physical and Aerodynamic Properties of Lateritic Mineral for use in Pneumatic Transport. Ciencias De La Ingeniería Y Aplicadas, 1(1), 35-44. Retrieved from http://investigacion.utc.edu.ec/index.php/ciya/article/view/75
Section
Artículo de investigación

Most read articles by the same author(s)

1 2 > >>