Mathematical model of quadratic approximation for optimal power flow in electrical distribution systems
Abstract
The purpose of this document is the development of a mathematical model that allows obtaining a global optimal value and eliminating the interaction process, making its convergence faster, because traditional methods for the power flows of the transmission system are not reliable. , when applied to distribution networks, and these in turn increase their complexity as their number of nodes is greater, giving as a solution to this problem the development of the mathematical model based on the quadratic approximation in the complex plane with Taylor series. Obtaining as a result of the mathematical model carried out an error percentage of 5% with a voltage of 0.8 pu, which determines that its linearization is optimal for the development of power flows in radial systems, finally the validation of the OPF was carried out with a comparison of the results obtained with the developed model applied to the IEEE test systems, these being compared with the results presented by traditional methods such as Gauss Seidel and Newton Raphson, thus demonstrating that this mathematical model can be considered as an optimal solution for the calculation of the OPF of distribution systems due to its rapid convergence, its calculation time and its adaptation for distribution systems.
Downloads
References
(1) O. D. Montoya-Giraldo, W. J. Gil-González, and A. Garcés-Ruíz, “Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida Optimal Power Flow for radial and mesh grids using semidefinite programming,” vol. 20, no. 40, pp. 29–42, 2017.
(2) L. Pravos and R. Castro, “Implementación Del Algoritmo ‘ Forward and Backward ,’” vol. 1, no. 1, pp. 14–18, 2017.
(3) O. D. Montoya, A. Garces, and S. Member, “Optimal Power Flow on DC Microgrids : A Quadratic Convex Approximation,” vol. 7747, no. c, pp. 1–5, 2018.
(4) Aristóteles and J. D. Juárez Cervantes, Sistemas de Distribución de Energía Eléctrica, vol. 52, no. 1. 2002.
(5) J. Bautista and S. Fernández, “UNIVERSIDAD DE CUENCA ‘DESARROLLO DE UN ALGORITMO DE INTERRELACIÓN PARA MICROREDES DE DISTRIBUCIÓN ELÉCTRICA’ Tesis Previa a la Obtención del Título de Master en Sistemas Eléctricos de Potencia CUENCA-ECUADOR JUNIO-2015.”
(6) E. Dominguez and M. Molina, “Normas Técnicas para Diseño y Expansión de las Redes Secundarias del Sistema de Distribución de la Empresa Eléctrica Centro Sur,” 2011.
(7) E. F. Durán, “La Generación Distribuida: Retos frente al Marco Legal del Mercado Eléctrico Ecuatoriano,” Rev. Técnica “Energía,” vol. 10, no. 1, pp. 13–27, 2014.
(8) G. B. Salazar, L. Chusin, and S. Escobar, “Análisis de Confiabilidad de Sistemas de Distribución Eléctrica con penetración de Generación Distribuida,” Rev. Politécnica, vol. 36, no. 1, p. 35, 2015.
(9) M. P. G. M, “PROGRAMA INTERACTIVO DE FLUJO DE POTENCIA PARA EL LABORATORIO DE SISTEMAS ELECTRICOS DE POTENCIA,” 1988.
(10) C. Huertas, “Preparadurías Sistemas de Potencia I : Flujos de Carga,” vol. 1, no. December, pp. 2–4, 2016.
(11) A. E. Oleas and C. A. Barrera, Control De Voltaje En Sistemas Eléctricos De Potencia Usando Transformadores Con Taps. 2019.
(12) “Tomas o taps de transformadores monofásicos y trifásicos - FARADAYOS.” .
(13) “Aproximación cuadrática al flujo de carga óptimo en sistemas de distribución considerando generación distribuida.”
(14) A. R. Herrera-Orozco, J. J. Mora-Florez, and J. F. Patiño, “Simulation and Validation of Polynomial Electric Load Model Using ATP,” Sci. Tech., vol. 18, no. 01, pp. 11–18, 2013.
(15) C. López Servin, “Estudio de Flujos de Potencia Óptimos de C.A. empleando el Método de Punto Interior,” p. 210, 2016.
(16) F. S. Quille Pinto, “OPTIMIZACIÓN DE FLUJO DE POTENCIA EN EL SISTEMA ELECTRICO ECUATORIANO CON PROGRAMACION NO LINEAL BAJO MATLAB,” Universidad Politécnica Salesiana, 2015.
(17) A. Torres, “Series de Taylor y Series de Fourier: Un estudio comparativo,” Univ. Granada, p. 50, 2015.
(18) M. C. Grant and S. P. Boyd, “The CVX Users ’ Guide, Release 2.0 (beta),” vol. 0, 2013.
(19) F. Polinomiales, “Funciones polinomiales y sus gráficas,” pp. 232–246.
(20) I. On, “Funciones holomorfas.”
(21) D. V Yakubovich, “Memoria del curso ‘Análisis complejo,’” 2004.
Copyright (c) 2021 Ciencias de la Ingeniería y Aplicadas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal agree to the following terms:
- Creative Commons Attribution-NonCommercial-NoDerivatives License allows others to share the work with acknowledgment of authorship of the work and initial publication in this journal.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it can lead to productive exchanges, as well as further citation. earliest and largest of published works (See The Effect of Open Access) (in English).