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RESUMEN: 

La papa es un cultivo alimenticio esencial, pero su producción se ve amenazada por 
enfermedades como tizón temprano y tardío, cuya detección tardía genera pérdidas 
económicas y ambientales significativas. La detección temprana y precisa de 
enfermedades en cultivos es fundamental para garantizar la seguridad alimentaria y la 
sostenibilidad agrícola. En este trabajo, se propone un enfoque innovador basado en 
deep learning para la identificación automática de enfermedades en hojas de papa 
(Solanum tuberosum), mediante una arquitectura mejorada de YOLOv12 que sustituye 
parcialmente las redes neuronales convolucionales tradicionales por mecanismos de 
atención. El modelo fue entrenado con recursos computacionales accesibles (2× GPU 
NVIDIA T4 en Kaggle) y un conjunto de datos inicial compuesto por 363 imágenes 
originales (121 por clase: tizón temprano, tizón tardío y hojas sanas), ampliado a 920 
mediante un pipeline de aumento de datos realista (rotación, flip, shear, ruido y 
variación de exposición). Gracias a la implementación de early stopping, el 
entrenamiento converge eficientemente en 43 épocas, alcanzando un rendimiento 
sobresaliente: precisión = 0,9854, mAP50 = 0,9950 y recall = 1.0000, estos indicadores 
demuestran alta sensibilidad y especificidad, incluso con datos limitados. En 
conclusión, el sistema propuesto es una solución viable, robusta y escalable para su 
integración en aplicaciones de agricultura de precisión, facilitando diagnósticos 
tempranos y reduciendo la dependencia de inspecciones manuales. 

Palabras clave: Papa, enfermedades, detección, deep learning, YOLO, agricultura de 
precisión. 
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ABSTRACT: 

Potato is an essential food crop, but its production is threatened by diseases such as 
early and late blight, whose delayed detection leads to significant economic and 
environmental losses. Early and accurate disease detection in crops is crucial for 
ensuring food security and agricultural sustainability. In this work, we propose an 
innovative deep learning–based approach for the automatic identification of diseases in 
potato leaves (Solanum tuberosum) using the standard YOLOv12 architecture. The 
model was trained on accessible computational resources (2× NVIDIA T4 GPUs on 
Kaggle) using an initial dataset of 363 original images (121 per class: early blight, late 
blight, and healthy leaves), expanded to 920 images through a realistic data 
augmentation pipeline (including rotation, flipping, shear, noise, and exposure 
variation). Thanks to early stopping, training converged efficiently within 43 epochs, 
achieving outstanding performance: precision = 0,9854, mAP50 = 0,9950, and recall = 
1,0000. These metrics demonstrate high sensitivity and specificity, even with limited 
data. In conclusion, the proposed system represents a viable, robust, and scalable 
solution for integration into precision agriculture applications, enabling timely 
diagnoses and reducing reliance on manual inspections. 
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1.​ INTRODUCCIÓN 

La agricultura constituye uno de los pilares fundamentales de la economía global y 
desempeña un papel crítico en la seguridad alimentaria y la sostenibilidad de los 
sistemas agroalimentarios [1]. En este contexto, la papa (Solanum tuberosum L.) se 
posiciona como el cuarto cultivo alimentario más importante del mundo en términos de 
producción, después del maíz, trigo y arroz [2], y representa una fuente esencial de 
nutrientes y calorías para más de mil millones de personas, especialmente en regiones 
en desarrollo [3] [4]. No obstante, este cultivo enfrenta amenazas constantes por 
enfermedades fitosanitarias de origen fúngico, las cuales pueden ocasionar pérdidas 
catastróficas en rendimiento y calidad, comprometiendo la estabilidad de los medios de 
vida rurales y la disponibilidad de alimentos [5]. 

Tradicionalmente, la identificación de enfermedades foliares ha dependido de 
inspecciones visuales por expertos, un enfoque que resulta lento, subjetivo, costoso y 
poco escalable[6] [7]. En respuesta a estas limitaciones, la agricultura de precisión ha 
emergido como un paradigma transformador, integrando tecnologías digitales para 
monitorear, analizar y gestionar los cultivos de manera eficiente y sostenible [8] [9]. En 
los últimos años, el aprendizaje profundo (deep learning) y el análisis de grandes 
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volúmenes de datos (big data) han demostrado un potencial extraordinario en 
aplicaciones agrícolas, particularmente en la detección automatizada de enfermedades 
en plantas a partir de imágenes foliares [10] [11]. Estos enfoques permiten no solo 
identificar patologías con alta precisión, sino también localizarlas espacialmente en 
tiempo real, facilitando intervenciones oportunas y localizadas.  

En este contexto, los modelos de detección de objetos en tiempo real, en particular la 
arquitectura YOLO (You Only Look Once) [12], han ganado relevancia por su 
equilibrio entre precisión, velocidad y eficiencia computacional, cualidades esenciales 
para su implementación en entornos agrícolas reales [13]. Sin embargo, su efectividad 
se ve frecuentemente limitada por la escasez de datos etiquetados, un problema crítico 
en cultivos específicos como la papa, donde la adquisición y anotación de imágenes 
requiere expertise fitopatológico y condiciones controladas [14]. 

Este trabajo aborda dicha limitación mediante el desarrollo de un pipeline de aumento 
de datos estratégico y realista, diseñado específicamente para simular las variaciones 
naturales del entorno de campo (rotación, iluminación, ruido, entre otros), a partir de un 
conjunto inicial reducido de sólo 121 imágenes por clase. El objetivo principal de este 
estudio es demostrar que, mediante un diseño cuidadoso del preprocesamiento y la 
selección del modelo, es posible entrenar un sistema robusto basado en YOLOv12 para 
la detección y localización precisa del tizón temprano, el tizón tardío y hojas sanas en 
papa, incluso con datos escasos. Los resultados presentados sientan las bases para 
soluciones escalables, accesibles y de bajo costo en el monitoreo fitosanitario de 
cultivos estratégicos. 

2.​ METODOLOGÍA 

En esta sección se describe la metodología empleada para el desarrollo y evaluación del 
modelo propuesto, el proceso comprende adquisición de los datos, etiquetado, 
preprocesamiento, aumento se datos, división del dataset, entrenamiento y resultados, 
como se indica en la tabla 1. 

Tabla 1. Propuesta metodológica para detección de enfermedades multiclase en papa 
con YOLOv12 

Adquisició
n de Datos 

Etiquetad
o 

Procesamien
to - Aumento 

División 
del dataset 

YoloV12 
-Entrenamie

nto 
Resultados 

  

Resize: 
640 x 640 

Orientación 
automática 
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Flip,Rotation 
Shear, Noise 

Bounding 
Box: Flip 
Bounding 

Box: 
Exposure 

 

    

 

2.1​Adquisición de datos 

Las fotografías se obtuvieron de Kaggle, el dataset es llamado PlantVillage [15], en este 
caso se obtuvo solo las fotografías del cultivo de papa, con dos enfermedades y hojas 
sanas, se escogieron el mismo número de imágenes para que el entrenamiento sea más 
efectivo (tabla 2). 

Tabla 2. Distribución de imágenes y clase 

Clase Número de imágenes 
Sana: 121 

Tizón tardío 121 
Tizón temprano 121 

  

2.2​Etiquetado de imágenes 

Mediante la plataforma de Roboflow [16], se realizó el etiquetado a mano de cada 
imagen con su respectiva clase, esto consistió en dibujar el bounding box indicando en 
que sitio de la fotografía se encontraba la hoja. 

2.3​Procesamiento y aumento de datos 

Una vez que todas las imágenes fueron etiquetadas, se procedió al redimensionamiento 
a 624x624 píxeles de la imagen original, debido a que la arquitectura YOLO necesita 
esta resolución para las imágenes de entrada. 

Luego en la misma plataforma Roboflow, se hizo el aumento de datos: 

�​ Flip: Horizontal, Vertical 
�​ Rotation: Between -15° and +15° 
�​ Shear: ±24° Horizontal, ±34° Vertical 
�​ Noise: Up to 1,92% of pixels 
�​ Bounding Box: Flip: Horizontal 
�​ Bounding Box: Exposure: Between -10% and +10% 

 
2.4​División del dataset 
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Con el aumento de datos, el dataset final se muestra en la Tabla 3:  

Tabla 3. Dataset final 

Divisió
n Número de imágenes / Porcentaje 

Train 849 / 92% 
Test 36 / 4% 
Valid 35​  4% 

 

2.5​Modelo YOLOv12 

La arquitectura YOLOv12 es la última versión de Ultralytics que resuelve tareas sobre 
detección, segmentación, clasificación, pose y la detección de objetos orientados OBB. 
La arquitectura YOLOv12 introduce un cambio paradigmático respecto a versiones 
anteriores al reemplazar los bloques convolucionales tradicionales por mecanismos de 
atención. Esta estrategia permite al modelo priorizar las regiones más relevantes de la 
imagen, optimizando así la extracción de características y aumentando la precisión en la 
detección, todo ello manteniendo la eficiencia necesaria para el procesamiento en 
tiempo real [17].  

Tabla 4. Arquitectura YOLOv12 [18] 

 

2.6​Entrenamiento del modelo 
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El entrenamiento del modelo se realizó utilizando la infraestructura proporcionada por 
la plataforma Kaggle, empleando dos unidades de procesamiento gráfico (GPU) del tipo 
NVIDIA T4, esta configuración permite acelerar significativamente los cálculos 
necesarios para el entrenamiento del modelo de deep learning, reduciendo el tiempo 
total de cómputo y facilitando la convergencia eficiente del algoritmo. 

Los parámetros de entrenamiento se muestran en la tabla 4. 

Tabla 5. Parámetros de entrenamiento YOLOv12 

Parámetros Valor de entrada 
Dataset inicial 363 imágenes 
Data augmentation 920 imágenes 
Tamaño del modelo YOLOv12 Nano – Turbo – 2.5 M parámetros 
Epochs 150 
Optimizador AdamW 
Batch Size 16 
Número de clases 3 
Learning Rate 0,00140143 

 

El conjunto de datos original proviene de Kaggle y contiene 363 imágenes de plantas de 
papa con distintas condiciones. Dado que este número es relativamente pequeño para 
entrenar un modelo de inteligencia artificial, se aplicó la aumentación de datos 
explicado en 2.3, llegando a un total de 920 imágenes. 

Se eligió el modelo YOLOv12 Nano – Turbo, una versión ligera y rápida de YOLO, 
ideal para aplicaciones prácticas en el campo, ya que funciona bien incluso en 
dispositivos con pocos recursos, como celulares o computadoras básicas. Este modelo 
tiene solo 2.5 millones de parámetros, lo que lo hace eficiente sin perder demasiada 
precisión. 

El entrenamiento se realizó durante 150 epochs (vueltas completas sobre el conjunto de 
datos), lo suficiente para que el modelo aprendiera bien sin memorizar los ejemplos. Se 
usó el optimizador AdamW, que ayuda a que el entrenamiento sea estable y eficaz, y un 
tamaño de lote (batch size) de 16, adecuado para el equipo utilizado. 

El problema se planteó con 3 clases: tizón tardío, mancha temprana y papa sana, ya que 
son las categorías más relevantes para los agricultores en la práctica. 

La tasa de aprendizaje se ajustó a 0.00140143 tras pruebas preliminares, buscando un 
equilibrio entre rapidez de aprendizaje y estabilidad durante el entrenamiento. 

3.​ ANÁLISIS DE RESULTADOS 

El modelo YOLOv12 fue entrenado durante 43 épocas, deteniéndose automáticamente 
mediante early stopping al no observarse mejoras significativas en las métricas de 
validación. Este comportamiento refleja la eficiencia del modelo y su capacidad para 
converger rápidamente sin sobreajuste, lo cual es especialmente relevante en 
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aplicaciones agrícolas donde los recursos computacionales y los conjuntos de datos 
pueden ser limitados. 

 

3.1​Matriz de confusión: Evaluación por clase 

La matriz de confusión (Figura 1), proporciona una visión detallada del desempeño del 
modelo a nivel de clase, permitiendo identificar posibles errores de clasificación entre 
enfermedades similares. Como se observa, el modelo exhibe un alto grado de precisión 
en todas las categorías, con muy pocos casos mal clasificados. Esto sugiere que los 
mecanismos de atención implementados en la arquitectura logran capturar 
características discriminantes específicas de cada enfermedad, incluso en presencia de 
síntomas visuales superpuestos o variaciones en la iluminación y orientación de las 
imágenes. 

 

Figura 1. Matriz de confusión. 

Resultados por clase: 

Clase “sana” 

Predicciones correctas: 16 

Total real de “sana”: 16 

●​ Exactitud (precisión) = 16/16 = 100% 
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●​ Recall (sensibilidad) = 16/16 = 100% 

El modelo identificó perfectamente todas las imágenes de plantas sanas. Esto es muy 
importante, ya que evita falsos alarmas en cultivos saludables. 

 

 

Clase “tizón tardío” 

Predicciones correctas: 11 

Erróneas: 1 (clasificado como tizón temprano) + 4 (clasificado como fondo) = 5 errores 

Total real de “tizón tardío”: 11 + 1 + 4 = 16 casos 

●​ Exactitud (precisión) = 11 / (11 + 0 + 0) = 100% (solo contamos predicciones de 
esta clase, y todas fueron correctas) 

●​ Recall (sensibilidad) = 11 / 16 = 68.75% 

El modelo reconoció bien los casos de tizón tardío cuando los detectó, pero falló en 5 de 
16 casos (31.25%). Esto sugiere que el modelo aún tiene dificultades para detectar 
algunos síntomas sutiles o parcialmente visibles de esta enfermedad. 

Clase “tizón temprano” 

Predicciones correctas: 8 

Erróneas: 1 (clasificado como tizón tardío) 

Total real de “tizón temprano”: 8 + 1 = 9 casos 

●​ Exactitud (precisión) = 8 / (8 + 0) = 100% 
●​ Recall (sensibilidad) = 8 / 9 = 88.89% 

El modelo tuvo un buen desempeño en esta clase, con solo 1 error (un caso confundido 
con tizón tardío). Esto indica que el modelo puede distinguir bien entre ambas 
enfermedades, aunque no perfectamente. 

 

Exactitud global (accuracy) = (16 + 11 + 8 ) / 40 = 35 / 40 = 87.5% 

 

3.2​Tabla de métricas clave: Rendimiento global del modelo 

En la Tabla 5 se resumen las métricas de rendimiento más relevantes obtenidas durante 
la fase de validación: 
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Tabla 6. Rendimiento global del modelo. 

Época precision recall mAP50 
43 0,98544 1 0,995 

 

Estos valores confirman que el modelo no solo detecta con alta precisión las regiones 
afectadas (precisión), sino que también es capaz de localizar prácticamente todas las 
instancias reales (recall = 1.0). 

Además, el alto valor de mAP50:0.995, sugiere que el modelo mantiene su precisión 
incluso bajo umbrales de intersección más exigentes, lo que lo posiciona como una 
herramienta viable para aplicaciones de campo donde se requiere alta fiabilidad. 

3.3​Ejemplos visuales de detección: Validación cualitativa 

Para complementar el análisis cuantitativo, se presentan en la figura 2 ejemplos 
representativos de inferencias realizadas por el modelo sobre imágenes de prueba. En 
ellos se observa cómo el modelo localiza con precisión las áreas afectadas por 
enfermedades, asignando etiquetas correctas y generando bounding boxes ajustados a 
los bordes de los síntomas. 

Figura 2. Resultados de predicciones. 
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Estos resultados cualitativos confirman la capacidad del modelo para generalizar a 
nuevas muestras, incluso en condiciones de iluminación variable, ángulos de toma 
distintos o presencia de ruido visual. Además, demuestran que el uso de mecanismos de 
atención permite al modelo enfocarse en regiones críticas de la imagen, mejorando la 
extracción de características relevantes para la detección. 

4.​ CONCLUSIONES 

En este estudio se desarrolló e implementó un modelo de detección de enfermedades en 
papa basado en una arquitectura avanzada de YOLOv12, centrada en mecanismos de 
atención en lugar de depender exclusivamente de capas convolucionales. Los resultados 
obtenidos demuestran que este enfoque no solo mantiene, sino que mejora 
significativamente el rendimiento en comparación con modelos tradicionales, logrando 
una precisión excepcional = 0.9854, mAP50 = 0.9950, una sensibilidad perfecta (recall 
= 1.0) y un accuracy de 87.5%, lo que garantiza que ninguna instancia de enfermedad 
pase desapercibida. 

El uso de early stopping permitió optimizar el proceso de entrenamiento, reduciendo el 
tiempo de cómputo y evitando el sobreajuste, mientras que la infraestructura de Kaggle 
con GPU T4 demostró ser suficiente para lograr resultados de alto nivel sin requerir 
hardware especializado costoso. Esto refuerza la viabilidad de soluciones de deep 
learning accesibles para pequeños y medianos agricultores. 

Además, la evaluación cualitativa mediante ejemplos visuales y la matriz de confusión 
confirma la capacidad del modelo para generalizar y detectar correctamente múltiples 
tipos de enfermedades en condiciones diversas, 16/16 plantas sanas bien detectadas, 8/9 
casos de tizón temprano identificados y 11/16 de tizón tardío reconocidos. 

Estas características lo posicionan como una solución práctica para su integración en 
aplicaciones móviles, drones o sistemas de monitoreo en campo. 
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