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RESUMEN:

La papa es un cultivo alimenticio esencial, pero su produccion se ve amenazada por
enfermedades como tizén temprano y tardio, cuya deteccion tardia genera pérdidas
econdmicas y ambientales significativas. La deteccion temprana y precisa de
enfermedades en cultivos es fundamental para garantizar la seguridad alimentaria y la
sostenibilidad agricola. En este trabajo, se propone un enfoque innovador basado en
deep learning para la identificacion automadtica de enfermedades en hojas de papa
(Solanum tuberosum), mediante una arquitectura mejorada de YOLOv12 que sustituye
parcialmente las redes neuronales convolucionales tradicionales por mecanismos de
atencion. El modelo fue entrenado con recursos computacionales accesibles (2x GPU
NVIDIA T4 en Kaggle) y un conjunto de datos inicial compuesto por 363 imégenes
originales (121 por clase: tizon temprano, tizon tardio y hojas sanas), ampliado a 920
mediante un pipeline de aumento de datos realista (rotacion, flip, shear, ruido y
variacion de exposicion). Gracias a la implementacion de early stopping, el
entrenamiento converge eficientemente en 43 épocas, alcanzando un rendimiento
sobresaliente: precision = 0,9854, mAP50 = 0,9950 y recall = 1.0000, estos indicadores
demuestran alta sensibilidad y especificidad, incluso con datos limitados. En
conclusion, el sistema propuesto es una solucion viable, robusta y escalable para su
integraciéon en aplicaciones de agricultura de precision, facilitando diagndsticos
tempranos y reduciendo la dependencia de inspecciones manuales.

Palabras clave: Papa, enfermedades, deteccion, deep learning, YOLO, agricultura de
precision.
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ABSTRACT:

Potato is an essential food crop, but its production is threatened by diseases such as
early and late blight, whose delayed detection leads to significant economic and
environmental losses. Early and accurate disease detection in crops is crucial for
ensuring food security and agricultural sustainability. In this work, we propose an
innovative deep learning—based approach for the automatic identification of diseases in
potato leaves (Solanum tuberosum) using the standard YOLOvI2 architecture. The
model was trained on accessible computational resources (2% NVIDIA T4 GPUs on
Kaggle) using an initial dataset of 363 original images (121 per class: early blight, late
blight, and healthy leaves), expanded to 920 images through a realistic data
augmentation pipeline (including rotation, flipping, shear, noise, and exposure
variation). Thanks to early stopping, training converged efficiently within 43 epochs,
achieving outstanding performance: precision = 0,9854, mAP50 = 0,9950, and recall =
1,0000. These metrics demonstrate high sensitivity and specificity, even with limited
data. In conclusion, the proposed system represents a viable, robust, and scalable
solution for integration into precision agriculture applications, enabling timely
diagnoses and reducing reliance on manual inspections.

Keywords: Potato, diseases, detection, deep learning, YOLO, precision agriculture.

Recibido: 25 de octubre de 2025; revision aceptada: 5 de enero de 2026.

1. INTRODUCCION

La agricultura constituye uno de los pilares fundamentales de la economia global y
desempefia un papel critico en la seguridad alimentaria y la sostenibilidad de los
sistemas agroalimentarios [1]. En este contexto, la papa (Solanum tuberosum L.) se
posiciona como el cuarto cultivo alimentario méas importante del mundo en términos de
produccion, después del maiz, trigo y arroz [2], y representa una fuente esencial de
nutrientes y calorias para mas de mil millones de personas, especialmente en regiones
en desarrollo [3] [4]. No obstante, este cultivo enfrenta amenazas constantes por
enfermedades fitosanitarias de origen fungico, las cuales pueden ocasionar pérdidas
catastroficas en rendimiento y calidad, comprometiendo la estabilidad de los medios de
vida rurales y la disponibilidad de alimentos [5].

Tradicionalmente, la identificacion de enfermedades foliares ha dependido de
inspecciones visuales por expertos, un enfoque que resulta lento, subjetivo, costoso y
poco escalable[6] [7]. En respuesta a estas limitaciones, la agricultura de precision ha
emergido como un paradigma transformador, integrando tecnologias digitales para
monitorear, analizar y gestionar los cultivos de manera eficiente y sostenible [8] [9]. En
los ultimos afios, el aprendizaje profundo (deep learning) y el analisis de grandes
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volumenes de datos (big data) han demostrado un potencial extraordinario en
aplicaciones agricolas, particularmente en la deteccion automatizada de enfermedades
en plantas a partir de imagenes foliares [10] [11]. Estos enfoques permiten no solo
identificar patologias con alta precision, sino también localizarlas espacialmente en
tiempo real, facilitando intervenciones oportunas y localizadas.

En este contexto, los modelos de deteccion de objetos en tiempo real, en particular la
arquitectura YOLO (You Only Look Once) [12], han ganado relevancia por su
equilibrio entre precision, velocidad y eficiencia computacional, cualidades esenciales
para su implementacion en entornos agricolas reales [13]. Sin embargo, su efectividad
se ve frecuentemente limitada por la escasez de datos etiquetados, un problema critico
en cultivos especificos como la papa, donde la adquisicion y anotacion de imagenes
requiere expertise fitopatoldgico y condiciones controladas [14].

Este trabajo aborda dicha limitacion mediante el desarrollo de un pipeline de aumento
de datos estratégico y realista, disefiado especificamente para simular las variaciones
naturales del entorno de campo (rotacion, iluminacion, ruido, entre otros), a partir de un
conjunto inicial reducido de so6lo 121 imagenes por clase. El objetivo principal de este
estudio es demostrar que, mediante un disefio cuidadoso del preprocesamiento y la
seleccion del modelo, es posible entrenar un sistema robusto basado en YOLOvV12 para
la deteccion y localizacion precisa del tizon temprano, el tizon tardio y hojas sanas en
papa, incluso con datos escasos. Los resultados presentados sientan las bases para
soluciones escalables, accesibles y de bajo costo en el monitoreo fitosanitario de
cultivos estratégicos.

2. METODOLOGIA

En esta seccion se describe la metodologia empleada para el desarrollo y evaluacion del
modelo propuesto, el proceso comprende adquisicion de los datos, etiquetado,
preprocesamiento, aumento se datos, division del dataset, entrenamiento y resultados,
como se indica en la tabla 1.

Tabla 1. Propuesta metodoldgica para deteccion de enfermedades multiclase en papa

con YOLOvI12
Adquisicio | Etiquetad | Procesamien | Division _E:l{(::(;:;ﬁlie Resultados
n de Datos 0 to - Aumento | del dataset nto
Resize:
640 x 640 s (O 0’ ultralytics
Orientacion 36 Images YOLO Vision
automatica
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Flip,Rotation
Shear, Noise
Bounding Backbone
BOX: th TRAIN SET D U
Bounding 849 Images
E Box: Neck
xposure U
TEST SET O Head

2.1 Adquisicion de datos

Las fotografias se obtuvieron de Kaggle, el dataset es llamado PlantVillage [15], en este
caso se obtuvo solo las fotografias del cultivo de papa, con dos enfermedades y hojas
sanas, se escogieron el mismo nimero de imagenes para que el entrenamiento sea mas
efectivo (tabla 2).

Tabla 2. Distribucion de imagenes y clase

Clase Numero de imagenes
Sana: 121
Tizén tardio 121
Tizon temprano 121

2.2 Etiquetado de imagenes

Mediante la plataforma de Roboflow [16], se realizd el etiquetado a mano de cada
imagen con su respectiva clase, esto consistid en dibujar el bounding box indicando en
que sitio de la fotografia se encontraba la hoja.

2.3 Procesamiento y aumento de datos

Una vez que todas las imagenes fueron etiquetadas, se procedid al redimensionamiento
a 624x624 pixeles de la imagen original, debido a que la arquitectura YOLO necesita
esta resolucion para las imagenes de entrada.

Luego en la misma plataforma Roboflow, se hizo el aumento de datos:

"1 Flip: Horizontal, Vertical

Rotation: Between -15° and +15°

Shear: +24° Horizontal, £34° Vertical

Noise: Up to 1,92% of pixels

Bounding Box: Flip: Horizontal

Bounding Box: Exposure: Between -10% and +10%

O Oooogo

2.4 Divisidn del dataset
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Con el aumento de datos, el dataset final se muestra en la Tabla 3:

Tabla 3. Dataset final
D“l’:sm Numero de imagenes / Porcentaje
Train 849 / 92%
Test 36 /4%
Valid 35 4%
2.5 Modelo YOLOv12

La arquitectura YOLOVI12 es la ultima version de Ultralytics que resuelve tareas sobre
deteccion, segmentacion, clasificacion, pose y la deteccion de objetos orientados OBB.
La arquitectura YOLOV12 introduce un cambio paradigmatico respecto a versiones
anteriores al reemplazar los bloques convolucionales tradicionales por mecanismos de
atencion. Esta estrategia permite al modelo priorizar las regiones mas relevantes de la
imagen, optimizando asi la extraccion de caracteristicas y aumentando la precision en la
deteccion, todo ello manteniendo la eficiencia necesaria para el procesamiento en
tiempo real [17].

Tabla 4. Arquitectura YOLOv12 [18]

Inpius:
(640,640
nitial Game e e
[Caonv [B4, 3,2]) H H
Pz » Come[512, 3, 2] ; i Upsamipie
PG i H Mearesl)
H H +
l l . Concat [P4]
(Cam [128, 3.2]) . i i
Wy e AZCH[512, True] | | i )
(Araa Afiantion + Com) H H
(Staggs 4] H H A2C2E (512, False]
T H I |frea Atberdion = Conv)
G2 [256] T — i "
g ] | R-ELAN [512] ! i :
1 1 " Upzampiz H Debection Segment Class
i . v i i N i Head Head Head
| RE 236 Conv [1024, 3, 2] o " -—!— B {Masks+ (Labels
l P2 i i Concai [P3] i Seaones) Fiaka) Seorps)
Conw [258, 3, 2] l
P33 AZCH [1024, True] i i AJC2 |256, False] i
{Area Altention + Conv} I H |#frea Atberdion < Conv) H
l {Stage PE) H i i Head
1 4 + 1
Cand [512 | i
(Stage P3) T i i Upsamphe
1 R-ELAM [1024] +
RELAN[512) | P Concat [P4]
Neck
Backbone

2.6 Entrenamiento del modelo
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El entrenamiento del modelo se realizé utilizando la infraestructura proporcionada por
la plataforma Kaggle, empleando dos unidades de procesamiento grafico (GPU) del tipo
NVIDIA T4, esta configuracion permite acelerar significativamente los célculos
necesarios para el entrenamiento del modelo de deep learning, reduciendo el tiempo
total de computo y facilitando la convergencia eficiente del algoritmo.

Los pardmetros de entrenamiento se muestran en la tabla 4.

Tabla 5. Parametros de entrenamiento YOLOv12

Parametros Valor de entrada

Dataset inicial 363 imagenes

Data augmentation | 920 imagenes

Tamano del modelo | YOLOv12 Nano — Turbo — 2.5 M parametros

Epochs 150
Optimizador AdamW
Batch Size 16

Numero de clases 3

Learning Rate 0,00140143

El conjunto de datos original proviene de Kaggle y contiene 363 iméagenes de plantas de
papa con distintas condiciones. Dado que este numero es relativamente pequefio para
entrenar un modelo de inteligencia artificial, se aplico la aumentacion de datos
explicado en 2.3, llegando a un total de 920 imégenes.

Se eligié el modelo YOLOv12 Nano — Turbo, una version ligera y rapida de YOLO,
ideal para aplicaciones practicas en el campo, ya que funciona bien incluso en
dispositivos con pocos recursos, como celulares o computadoras basicas. Este modelo
tiene solo 2.5 millones de pardmetros, lo que lo hace eficiente sin perder demasiada
precision.

El entrenamiento se realizé durante 150 epochs (vueltas completas sobre el conjunto de
datos), lo suficiente para que el modelo aprendiera bien sin memorizar los ejemplos. Se
us6 el optimizador AdamW, que ayuda a que el entrenamiento sea estable y eficaz, y un
tamafio de lote (batch size) de 16, adecuado para el equipo utilizado.

El problema se plante6 con 3 clases: tizon tardio, mancha temprana y papa sana, ya que
son las categorias mas relevantes para los agricultores en la practica.

La tasa de aprendizaje se ajustd a 0.00140143 tras pruebas preliminares, buscando un
equilibrio entre rapidez de aprendizaje y estabilidad durante el entrenamiento.

3. ANALISIS DE RESULTADOS

El modelo YOLOvVI12 fue entrenado durante 43 épocas, deteniéndose automaticamente
mediante early stopping al no observarse mejoras significativas en las métricas de
validacion. Este comportamiento refleja la eficiencia del modelo y su capacidad para
converger rapidamente sin sobreajuste, lo cual es especialmente relevante en

124



CIYA. Ciencias de la Ingenieria y Aplicadas, Vol. 10 N° 1, enero-junio
de 2026, pp. 119-130

aplicaciones agricolas donde los recursos computacionales y los conjuntos de datos
pueden ser limitados.

3.1 Matriz de confusion: Evaluacion por clase

La matriz de confusién (Figura 1), proporciona una vision detallada del desempeiio del
modelo a nivel de clase, permitiendo identificar posibles errores de clasificacion entre
enfermedades similares. Como se observa, el modelo exhibe un alto grado de precision
en todas las categorias, con muy pocos casos mal clasificados. Esto sugiere que los
mecanismos de atencion implementados en la arquitectura logran capturar
caracteristicas discriminantes especificas de cada enfermedad, incluso en presencia de
sintomas visuales superpuestos o variaciones en la iluminacidon y orientacion de las
imagenes.

Confusion Matrix

16
sana 14

12

tizon tardio -

Predicted

tizon temprano - -6

background - -2

sana -

tizon tardio -
tizon temprano -
background

True

Figura 1. Matriz de confusion.
Resultados por clase:
Clase “sana”
Predicciones correctas: 16
Total real de “sana”: 16
e Exactitud (precision) = 16/16 = 100%
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e Recall (sensibilidad) = 16/16 = 100%

El modelo identifico perfectamente todas las imagenes de plantas sanas. Esto es muy
importante, ya que evita falsos alarmas en cultivos saludables.

Clase “tizon tardio”

Predicciones correctas: 11

Errdneas: 1 (clasificado como tizon temprano) + 4 (clasificado como fondo) = 5 errores
Total real de “tizén tardio”: 11 + 1 +4 = 16 casos

e Exactitud (precision) = 11 /(11 + 0 + 0) = 100% (solo contamos predicciones de
esta clase, y todas fueron correctas)
e Recall (sensibilidad) = 11/16 = 68.75%

El modelo reconoci6 bien los casos de tizon tardio cuando los detecto, pero falld en 5 de
16 casos (31.25%). Esto sugiere que el modelo atin tiene dificultades para detectar
algunos sintomas sutiles o parcialmente visibles de esta enfermedad.

Clase “tizon temprano”

Predicciones correctas: 8

Erréneas: 1 (clasificado como tizén tardio)
Total real de “tizon temprano™: 8 + 1 = 9 casos

e Exactitud (precision) =8 /(8 + 0) = 100%
e Recall (sensibilidad) = 8 /9 = 88.89%

El modelo tuvo un buen desempefio en esta clase, con solo 1 error (un caso confundido
con tizéon tardio). Esto indica que el modelo puede distinguir bien entre ambas
enfermedades, aunque no perfectamente.

Exactitud global (accuracy) = (16 + 11 +8)/40=35/40=87.5%

3.2 Tabla de métricas clave: Rendimiento global del modelo

En la Tabla 5 se resumen las métricas de rendimiento mas relevantes obtenidas durante
la fase de validacion:
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Tabla 6. Rendimiento global del modelo.

Epoca precision recall mAP50
43 0,98544 1 0,995

Estos valores confirman que el modelo no solo detecta con alta precision las regiones
afectadas (precision), sino que también es capaz de localizar practicamente todas las
instancias reales (recall = 1.0).

Ademas, el alto valor de mAP50:0.995, sugiere que el modelo mantiene su precision
incluso bajo umbrales de interseccion mas exigentes, lo que lo posiciona como una
herramienta viable para aplicaciones de campo donde se requiere alta fiabilidad.

3.3 Ejemplos visuales de deteccion: Validacion cualitativa

Para complementar el andlisis cuantitativo, se presentan en la figura 2 ejemplos
representativos de inferencias realizadas por el modelo sobre imagenes de prueba. En
ellos se observa como el modelo localiza con precision las areas afectadas por
enfermedades, asignando etiquetas correctas y generando bounding boxes ajustados a
los bordes de los sintomas.

tizon tardio 0.9

tizon-tardio=57- JPG.rf.19ac4fc5e61213fd tizontizen tardio 0.93:H.5243f398a572601d

tizon-tardio-65- JPG:rf:-572950ea0e2361ic6 Ty |tizon=tardio=9=JdRGuH- b8

tizon tardio 0.9 tizon tardio 0.4) = =

Figura 2. Resultados de predicciones.
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Estos resultados cualitativos confirman la capacidad del modelo para generalizar a
nuevas muestras, incluso en condiciones de iluminacidon variable, angulos de toma
distintos o presencia de ruido visual. Ademas, demuestran que el uso de mecanismos de
atencion permite al modelo enfocarse en regiones criticas de la imagen, mejorando la
extraccion de caracteristicas relevantes para la deteccion.

4. CONCLUSIONES

En este estudio se desarroll6 e implement6d un modelo de deteccion de enfermedades en
papa basado en una arquitectura avanzada de YOLOv12, centrada en mecanismos de
atencion en lugar de depender exclusivamente de capas convolucionales. Los resultados
obtenidos demuestran que este enfoque no solo mantiene, sino que mejora
significativamente el rendimiento en comparacién con modelos tradicionales, logrando
una precision excepcional = 0.9854, mAP50 = 0.9950, una sensibilidad perfecta (recall
= 1.0) y un accuracy de 87.5%, lo que garantiza que ninguna instancia de enfermedad
pase desapercibida.

El uso de early stopping permitié optimizar el proceso de entrenamiento, reduciendo el
tiempo de computo y evitando el sobreajuste, mientras que la infraestructura de Kaggle
con GPU T4 demostr6 ser suficiente para lograr resultados de alto nivel sin requerir
hardware especializado costoso. Esto refuerza la viabilidad de soluciones de deep
learning accesibles para pequefios y medianos agricultores.

Ademas, la evaluacion cualitativa mediante ejemplos visuales y la matriz de confusioén
confirma la capacidad del modelo para generalizar y detectar correctamente multiples
tipos de enfermedades en condiciones diversas, 16/16 plantas sanas bien detectadas, 8/9
casos de tizon temprano identificados y 11/16 de tizon tardio reconocidos.

Estas caracteristicas lo posicionan como una solucion practica para su integracion en
aplicaciones moviles, drones o sistemas de monitoreo en campo.
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