Evaluación experimental de biochar de residuos orgánicos para la remoción de mercurio en soluciones acuosas contaminadas

  • José Luis Ágreda Oña Universidad Técnica de Cotopaxi, Facultad de CAREN, Ingeniería Ambiental, Latacunga, Cotopaxi, Ecuador
  • Vladimir Marconí Ortiz Bustamante Universidad Técnica de Cotopaxi, Facultad de CAREN, Ingeniería Ambiental, Latacunga, Cotopaxi, Ecuador
  • Edison Amílcar Parra Pazmiño Empresa Pública de Aseo y Gestión Ambiental Latacunga, Gerencia General, Latacunga, Cotopaxi, Ecuador
Palabras clave: Biochar, mercurio, adsorción, residuos orgánicos, remediación ambiental

Resumen

La contaminación por mercurio en cuerpos de agua representa una amenaza crítica para la salud pública y los ecosistemas, especialmente en regiones expuestas a actividades mineras. Frente a las limitaciones técnicas, económicas y ambientales de las tecnologías convencionales de remoción, el biochar emerge como una alternativa sostenible y de bajo costo. Este estudio evaluó experimentalmente la eficiencia de remoción de mercurio en soluciones acuosas contaminadas utilizando biochar producido a partir de cáscara de cacao (Theobroma cacao) y cascarilla de arroz (Oryza sativa), dos residuos orgánicos de alta disponibilidad en Ecuador. Se diseñaron ensayos en laboratorio bajo condiciones controladas, aplicando diferentes dosis de biochar (1, 2.5, 5 y 10 g) y tiempos de contacto (30, 60 y 120 minutos), utilizando una solución madre de HgCl₂ (108 mg/L) diluida hasta niveles permisibles conforme a la normativa ecuatoriana NTE INEN 1108:2014. El análisis cualitativo se realizó mediante marcha analítica de cationes metálicos, y la validación cuantitativa mediante espectrofotometría de absorción atómica (AAS). La caracterización fisicoquímica del biochar reveló que el obtenido de cáscara de cacao presentó mayor porosidad, menor contenido de cenizas y pH más alcalino, condiciones que favorecen la adsorción de Hg²⁺. Los resultados mostraron remociones superiores al 95% en la mayoría de los tratamientos, con concentraciones residuales por debajo del límite normativo. El análisis estadístico multifactorial (ANOVA) confirmó que la eficiencia de adsorción depende significativamente del tipo de biomasa, la dosis aplicada y el tiempo de contacto (p < 0.0001). Este estudio aporta evidencia sólida sobre el uso del biochar como tecnología ambiental replicable, promueve el aprovechamiento de residuos locales bajo principios de economía circular, y refuerza su potencial como herramienta eficaz de remediación hídrica frente a la contaminación por metales pesados.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abbasi, Q., Pourakbar, L., & Siavash Moghaddam, S. (2023). Potential role of apple wood biochar in mitigating mercury toxicity in corn (Zea mays L.). Ecotoxicology and Environmental Safety, 267, 115619. https://doi.org/10.1016/j.ecoenv.2023.115619

Abbey, C. Y. B., Duwiejuah, A. B., & Quianoo, A. K. (2023). Removal of toxic metals from aqueous phase using cacao pod husk biochar in the era of green chemistry. Applied Water Science, 13(2), 57. https://doi.org/10.1007/s13201-022-01863-5

Amaral, M. A., Fusinato, M., Da Cunha, M., Coll, J. P., Lacerda, J. H., & Sanches Filho, P. J. (2023). Evaluation of the Adsorbent Potential of Biochar obtained by Pyrolysis to Remove Emerging Contaminants. Brazilian Journal of Analytical Chemistry. https://doi.org/10.30744/brjac.2179-3425.TN-31-2023

Becerra-Moreno, D., Rubio-Gomez, Y., Ramírez-Ríos, L. F., Barajas-Solano, A. F., & Machuca Martínez, F. (2021). Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios. Ciencia en Desarrollo, 12(2). https://doi.org/10.19053/01217488.v12.n2.2021.12503

Chakraborty, A., Sarkar, S., Kyarikwal, R., Nag, P., Vennapusa, S. R., & Mukhopadhyay, S. (2022). Piperazine-Linked Covalent Triazine Polymer as an Efficient Platform for the Removal of Toxic Mercury(II) Ions from Wastewater. ACS Applied Polymer Materials, 4(11), 8118-8126. https://doi.org/10.1021/acsapm.2c01085

Chaudhuri, S., Sigmund, G., Bone, S. E., Kumar, N., & Hofmann, T. (2022). Mercury Removal from Contaminated Water by Wood-Based Biochar Depends on Natural Organic Matter and Ionic Composition. Environmental Science & Technology, 56(16), 11354-11362. https://doi.org/10.1021/acs.est.2c01554

Cheng, B., Wang, Z., Yan, X., Yu, Y., Liu, L., Gao, Y., Zhang, H., & Yang, X. (2023). Characteristics and pollution risks of Cu, Ni, Cd, Pb, Hg and As in farmland soil near coal mines. Soil & Environmental Health, 1(3), 100035. https://doi.org/10.1016/j.seh.2023.100035

Cho, Y., Lim, J. Y., Igalavithana, A. D., Hwang, G., Sang, M. K., Mašek, O., & Ok, Y. S. (2024). AI-guided investigation of biochar’s efficacy in Pb immobilization for remediation of Pb contaminated agricultural land. Applied Biological Chemistry, 67(1), 82. https://doi.org/10.1186/s13765-024-00933-3

Dermawan, D., Febrianti, A. N., Setyawati, E. E. P., Pham, M.-T., Jiang, J.-J., You, S.-J., & Wang, Y.-F. (2022). The potential of transforming rice straw (Oryza sativa) and golden shower (Cassia fistula) seed waste into high-efficiency biochar by atmospheric pressure microwave plasma. Industrial Crops and Products, 185, 115122. https://doi.org/10.1016/j.indcrop.2022.115122

Garcia-Chevesich, P. A., Alejo, F., Zea, J., Zevallos, C., Figueroa, L., Pizarro, R., & Bellona, C. (2025). Gold mining-derived water pollution and treatment in Latin America. Environmental Conservation, 52(1), 1-2. https://doi.org/10.1017/S0376892924000237

Ghzal, Q., Javed, T., & Batool, M. (2023). Potential of easily prepared low-cost rice husk biochar and burnt clay composite for the removal of methylene blue dye from contaminated water. Environmental Science: Water Research & Technology, 9(11), 2925-2941. https://doi.org/10.1039/D3EW00392B

Giwa, A. S., Ndungutse, J. M., Li, Y., Mabi, A., Liu, X., Vakili, M., Memon, A. G., Ai, L., Chenfeng, Z., & Sheng, M. (2022). Modification of biochar with Fe3 O4 and humic acid-salt for removal of mercury from aqueous solutions: A review. Environmental Pollutants and Bioavailability, 34(1), 352-364. https://doi.org/10.1080/26395940.2022.2115402

Gümüş, D., & Gümüş, F. (2022). Removal of Hydroxychloroquine Using Engineered Biochar from Algal Biodiesel Industry Waste: Characterization and Design of Experiment (DoE). Arabian Journal for Science and Engineering, 47(6), 7325-7334. https://doi.org/10.1007/s13369-021-06235-w

Hassan, A., Samy, G., Hegazy, M., Balah, A., & Fathy, S. (2024). Statistical analysis for water quality data using ANOVA (Case study – Lake Burullus influent drains). Ain Shams Engineering Journal, 15(4), 102652. https://doi.org/10.1016/j.asej.2024.102652

Hu, T., Gu, H., Lam, S. S., Peng, W., Li, H., & Yan, L. (2025). Enhanced Biochar as a Game-Changer in Heavy Metal and Organic Pollutant Remediation. Https://Www.Espublisher.Com/. https://www.espublisher.com/journals/articledetails/1614

Hennink, M., & Kaiser, B. N. (2022). Sample sizes for saturation in qualitative research: A systematic review of empirical tests. Social Science & Medicine, 292, 114523. https://doi.org/10.1016/j.socscimed.2021.114523

Huang, Y., Huang, Y., Fang, L., Zhao, B., Zhang, Y., Zhu, Y., Wang, Z., Wang, Q., & Li, F. (2023). Interfacial chemistry of mercury on thiol-modified biochar and its implication for adsorbent engineering. Chemical Engineering Journal, 454, 140310. https://doi.org/10.1016/j.cej.2022.140310

Jamal, M. U., & Fletcher, A. J. (2023). Design of Experiments Study on Scottish Wood Biochars and Process Parameter Influence on Final Biochar Characteristics. BioEnergy Research, 16(4), 2342-2355. https://doi.org/10.1007/s12155-023-10595-6

Kalina, M., Sovova, S., Hajzler, J., Kubikova, L., Trudicova, M., Smilek, J., & Enev, V. (2022). Biochar Texture—A Parameter Influencing Physicochemical Properties, Morphology, and Agronomical Potential. Agronomy, 12(8), 1768. https://doi.org/10.3390/agronomy12081768

Kolawole, A. S., & Iyiola, A. O. (2023). Environmental Pollution: Threats, Impact on Biodiversity, and Protection Strategies. En S. C. Izah & M. C. Ogwu (Eds.), Sustainable Utilization and Conservation of Africa’s Biological Resources and Environment (Vol. 32, pp. 377-409). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6974-4_14

Krajčovičová, T. E., Hatala, M., Gemeiner, P., Híveš, J., Mackuľak, T., Nemčeková, K., & Svitková, V. (2023). Biochar for Water Pollution Control: From Sensing to Decontamination. Chemosensors, 11(7), 394. https://doi.org/10.3390/chemosensors11070394

López, J. E., Arroyave, C., Aristizábal, A., Almeida, B., Builes, S., & Chavez, E. (2022). Reducing cadmium bioaccumulation in Theobroma cacao using biochar: Basis for scaling-up to field. Heliyon, 8(6), e09790. https://doi.org/10.1016/j.heliyon.2022.e09790

Lv, L., Huang, S., & Zhou, H. (2024). Effect of introducing chemically activated biochar as support material on thermal properties of different organic phase change materials. Solar Energy Materials and Solar Cells, 264, 112617. https://doi.org/10.1016/j.solmat.2023.112617

Mangui Andrade, A. M., Mendoza Quishpe, M. F., & Ágreda Oña, J. L. (2025). Modelación hidrogeoquímica del transporte de metales pesados ríos andinos del Ecuador. Revista Recursos Naturales Producción y Sostenibilidad, 4(2), 11-23. https://doi.org/10.61236/renpys.v4i2.1117

Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W., & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128

Mwamburi, L. A. (2022). Removal of Microbial Contaminants From Polluted Water Using Combined Biosand Filters Techniques. En N. S. El‐Gendy (Ed.), Sustainable Solutions for Environmental Pollution (1.a ed., pp. 265-291). Wiley. https://doi.org/10.1002/9781119827665.ch5

Palansooriya, K. N., Li, J., Dissanayake, P. D., Suvarna, M., Li, L., Yuan, X., Sarkar, B., Tsang, D. C. W., Rinklebe, J., Wang, X., & Ok, Y. S. (2022). Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environmental Science & Technology, 56(7), 4187-4198. https://doi.org/10.1021/acs.est.1c08302

Rosdiana, E., Nugroho, S. A., Wardana, R., Salim, A., & Ali, F. Y. (2025). Application of Combined Coffee Skin Husk Biochar and Rice Husk Charcoal as Planting Media to Improve on the Growth Seedling Coffee. IOP Conference Series: Earth and Environmental Science, 1446(1), 012034. https://doi.org/10.1088/1755-1315/1446/1/012034

Ugrina, M., Jurić, A., Nuić, I., & Trgo, M. (2023). Modeling, Simulation, Optimization, and Experimental Verification of Mercury Removal onto Natural and Sulfur-Impregnated Zeolite Clinoptilolite—Assessment of Feasibility for Remediation of Mercury-Contaminated Soil. Processes, 11(2), 606. https://doi.org/10.3390/pr11020606

Urgilez, R. (2024). Seguridad alimentaria: Riesgo asociados Metales Pesados sobre la salud humana. https://www.jah-journal.com/index.php/jah/article/view/204/402

Varkolu, M., Gundekari, S., Omvesh, Palla, V. C. S., Kumar, P., Bhattacharjee, S., & Vinodkumar, T. (2025). Recent Advances in Biochar Production, Characterization, and Environmental Applications. Catalysts, 15(3), 243. https://doi.org/10.3390/catal15030243

Vergara, E., Pancetti, F., Zúñiga, L., Fabres, K., & Bahamonde, P. (2024). Risk map of human intake of mercury through fish consumption in Latin America and the Caribbean. Frontiers in Sustainable Food Systems, 8, 1470683. https://doi.org/10.3389/fsufs.2024.1470683

Wahyu, M. E., Damayanti, D., & Wu, H. S. (2025). Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption. Biomass, 5(3), 40. https://doi.org/10.3390/biomass5030040

Wang, G., Zhang, S., Cui, J., Gao, W., Rong, X., Lu, Y., & Gao, C. (2023). Novel highly selective fluorescence sensing strategy for Mercury(Ⅱ) in water based on nitrogen-doped carbon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122010. https://doi.org/10.1016/j.saa.2022.122010

Wang, X., Li, J., Xu, L., Su, J., Wang, Z., & Li, X. (2024). Simultaneous removal of calcium, cadmium and tetracycline from reverse osmosis wastewater by sycamore deciduous biochar, shell powder and polyurethane sponge combined with biofilm reactor. Bioresource Technology, 394, 130215. https://doi.org/10.1016/j.biortech.2023.130215

Wen, C., Liu, T., Wang, D., Wang, Y., Chen, H., Luo, G., Zhou, Z., Li, C., & Xu, M. (2023). Biochar as the effective adsorbent to combustion gaseous pollutants: Preparation, activation, functionalization and the adsorption mechanisms. Progress in Energy and Combustion Science, 99, 101098. https://doi.org/10.1016/j.pecs.2023.101098

Yang, Z., Ren, J., Du, M., Zhao, Y., & Yu, K. (2022). Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors, 22(15), 5679. https://doi.org/10.3390/s22155679


Zhang, W., Chen, R., Li, J., Huang, T., Wu, B., Ma, J., Wen, Q., Tan, J., & Huang, W. (2023). Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning. Biochar, 5(1), 25. https://doi.org/10.1007/s42773-023-00225-x

Zhao, M., Li, Y., & Wang, Z. (2022). Mercury and Mercury-Containing Preparations: History of Use, Clinical Applications, Pharmacology, Toxicology, and Pharmacokinetics in Traditional Chinese Medicine. Frontiers in Pharmacology, 13, 807807. https://doi.org/10.3389/fphar.2022.807807
Publicado
2026-01-31
Cómo citar
Ágreda Oña, J. L., Ortiz Bustamante, V. M., & Parra Pazmiño, E. A. (2026). Evaluación experimental de biochar de residuos orgánicos para la remoción de mercurio en soluciones acuosas contaminadas. Revista Recursos Naturales Producción Y Sostenibilidad, 5(1), 44-55. https://doi.org/10.61236/renpys.v5i1.1260
Sección
Artículos de investigación