Chicaiza A., Carrera D.
150
Niu, T., Hou, Z., Yu, J., Lu, J., Yu, Q., Yang, L., Ma, J., Liu, Y., Shi, H., & Jin, X. (2024). Construction of
prediction model for water retention of forest ecosystem in alpine region based on vegetation spectral
features. Ecological Indicators, 169. https://doi.org/10.1016/j.ecolind.2024.112889
Panhelleux léa, Rapinel Sébastien, & Humbert-Moy Laurence. (2023). Specification Table.
https://doi.org/10.5281/zenodo.7895449
Pérez-García, Á., van Emmerik, T. H. M., Mata, A., Tasseron, P. F., & López, J. F. (2024). Efficient plastic
detection in coastal areas with selected spectral bands. Marine Pollution Bulletin, 207.
https://doi.org/10.1016/j.marpolbul.2024.116914
Puttipipatkajorn, A., & Puttipipatkajorn, A. (2024). Development of low-cost portable spectrometer equipped with
18-band spectral sensors using deep learning model for evaluating moisture content of rubber sheets. Smart
Agricultural Technology, 9. https://doi.org/10.1016/j.atech.2024.100562
Qian, H., Bao, N., Meng, D., Zhou, B., Lei, H., & Li, H. (2024). Mapping and classification of Liao River Delta
coastal wetland based on time series and multi-source GaoFen images using stacking ensemble model.
Ecological Informatics, 80. https://doi.org/10.1016/j.ecoinf.2024.102488
Qiao, K., Zhu, W., Xie, Z., Wu, S., & Li, S. (2024). New three red-edge vegetation index (VI3RE) for crop
seasonal LAI prediction using Sentinel-2 data. International Journal of Applied Earth Observation and
Geoinformation, 130. https://doi.org/10.1016/j.jag.2024.103894
Qu, C., Li, P., & Zhang, C. (2021). A spectral index for winter wheat mapping using multi-temporal Landsat
NDVI data of key growth stages. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 431–447.
https://doi.org/10.1016/j.isprsjprs.2021.03.015
Rahman, G., Kim, J. Y., Kim, T. W., Park, M., & Kwon, H. H. (2025). Spatial and temporal variations in
temperature and precipitation trends in South Korea over the past half-century (1974–2023) using
innovative trend analysis. Journal of Hydro-Environment Research, 58, 1–18.
https://doi.org/10.1016/j.jher.2024.11.002
Recuero, L., Maila, L., Cicuéndez, V., Sáenz, C., Litago, J., Tornos, L., Merino-de-Miguel, S., & Palacios-Orueta,
A. (2023). Mapping Cropland Intensification in Ecuador through Spectral Analysis of MODIS NDVI Time
Series. Agronomy, 13(9). https://doi.org/10.3390/agronomy13092329
Ren, Y., Zhang, F., Zhao, C., & Cheng, Z. (2023). Attribution of climate change and human activities to vegetation
NDVI in Jilin Province, China during 1998–2020. Ecological Indicators, 153.
https://doi.org/10.1016/j.ecolind.2023.110415
Roznik, M., Boyd, M., & Porth, L. (2022). Improving crop yield estimation by applying higher resolution satellite
NDVI imagery and high-resolution cropland masks. Remote Sensing Applications: Society and
Environment, 25. https://doi.org/10.1016/j.rsase.2022.100693
RYU, J. H., OH, D., & CHO, J. (2021). Simple method for extracting the seasonal signals of photochemical
reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor.
Journal of Integrative Agriculture, 20(7), 1969–1986. https://doi.org/10.1016/S2095-3119(20)63410-4
Saha, K. K., Weltzien, C., Bookhagen, B., & Zude-Sasse, M. (2024). Chlorophyll content estimation and ripeness
detection in tomato fruit based on NDVI from dual wavelength LiDAR point cloud data. Journal of Food
Engineering, 383. https://doi.org/10.1016/j.jfoodeng.2024.112218
Sandonís-Pozo, L., Oger, B., Tisseyre, B., Llorens, J., Escolà, A., Pascual, M., & Martínez-Casasnovas, J. A.
(2024). Leafiness-LiDAR index and NDVI for identification of temporal patterns in super-intensive almond
orchards as response to different management strategies. European Journal of Agronomy, 159.
https://doi.org/10.1016/j.eja.2024.127278
Sapkota, A., Roby, M., Peddinti, S. R., Fulton, A., & Kisekka, I. (2024). Comparative analysis of
evapotranspiration (ET), crop water stress index (CWSI), and normalized difference vegetation index
(NDVI) to delineate site-specific irrigation management zones in almond orchards. Scientia Horticulturae,
339. https://doi.org/10.1016/j.scienta.2024.113860
Sayre, R., Frye, C., Breyer, S., Roehrdanz, P. R., Elsen, P. R., Butler, K., Brown, C., Cress, J., Karagulle, D.,
Martin, M., Sangermano, F., Smyth, R. L., Sohl, T. L., Wolff, N. H., Wright, D. J., & Wu, Z. (2024).
Potential 2050 Distributions of World Terrestrial Ecosystems from Projections of Changes in World Climate
Regions and Global Land Cover. Global Ecology and Conservation, e03370.
https://doi.org/10.1016/j.gecco.2024.e03370